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Abstract. This paper discusses the concept of big data mining in the domain of biology and 
medicine. Biological and medical data are increasing at very rapid rates, which in many cases 
outpace even Moore’s law. This is the result of recent technological development, as well as 
the exploratory attitude of human beings, that prompts scientists to answer more questions by 
conducting more experiments. Representative examples are the advances in sequencing and 
medical imaging technologies. Challenges posed by this data deluge, and the emerging 
opportunities of their efficient management and analysis are also part of the discussion. The 
major emphasis is given to the most common biological and medical data mining 
applications.  
 
 
Introduction 
Data collection and data analysis were actually taking place from ancient time, even if they 
were in a primitive form. Many ancient human civilizations had gained important knowledge 
by observing the planets and the stars. By analyzing these observations they were able to 
accurately predict the time of the seasonal changes over a year. These predictions were very 
valuable, especially for agricultural and habitation purposes, providing the means for the 
survival and development of these civilizations.  

Later on in the age of scientific revolution data collection and analysis became a more 
mature process that guided to a large number of important scientific discoveries. Worth 
mentioning is the large number of accurate and comprehensive astronomical observations that 
were collected by the Danish astronomer Tycho Brahe during the early years of scientific 
revolution in 16th century. After Brahe’s death, Johannes Kepler used those astronomical data, 
a fact that implies a kind of data sharing, and developed his three laws of planetary motion. 
Another important example of data collection and data analysis was the one of Charles 
Darwin’s in 19th century. Darwin made a voyage that lasted almost five years. During the 
voyage he investigated geology of the lands he visited and made a lot of natural history 
collections. The notes and observations he made during his voyage were determinant for the 
development of natural selection and evolution theories. 

In the 20th century the important discoveries concerning DNA, such as the clarification 
of the correct double-helix model of DNA structure (Watson & Crick, 1953) established 
molecular biology as one of the most important research fields of biology. These discoveries 
attracted much attention and changed the direction of research in biology, as well as in 
medicine. Although the advances in biology during the 20th century were great, the scientific 
theories and discoveries of physicists are considered even greater. Therefore 20th century is 
described as the century of physics. However, as it is widely believed we are now living in the 
century of biology, which promises important advances that will enlighten the constitutive 
details and rules that characterize and govern life (Venter & Cohen, 2004).  

The acquisition of more data has been proceeding through various inventions and 
technological advancements. For example, the invention and use of telescope made possible 



the observation of more objects in the sky, whereas the invention and use of the microscope 
made possible the discovery and study of microscopic organisms such as bacteria. One of the 
most important recent technological advancements in biology was the development of the 
polymerase chain reaction (PCR) by Kary Mullis in 1983. The first scientific publication 
about PCR presented by Mullis et al. three years later (1986). PCR is a biochemical process 
that amplifies a single or a small number of copies of a piece of DNA sequence across several 
orders of magnitude. The great importance of PCR is reflected in the fact that PCR was the 
cornerstone of developing large-scale experiments and sequencing projects making possible 
to decipher the genetic code of organisms. The representative example is the Human Genome 
Project, which was founded in 1990 by the U.S. Department of Energy and the U.S. National 
Institutes of Health (NIH) and was completed in 2003. 

After the recent technological advances that made possible the conduction of many 
large scale experiments, the collection of biological data has been increasing at explosive 
rates. An important example to perceive the rapidness of this data growth is to consider that 
the number of transistors on integrated circuits and consequently the processing speed as well 
as storage capacity of computing hardware doubles approximately every 18 months. This is a 
very good estimation made by Gordon Moore (Moore, 1965) and is widely known as Moore’s 
law. However, nowadays Moore’s law seems reaching its limits. In contrast, new biological 
data is doubling approximately every 9 months, and this rate seems to increase dramatically 
(EMBL, 2013).  
 
Basic Molecular Biology Concepts 
Diversity is a key property of life and is reflected in the tremendous heterogeneity among 
living creatures. Surprisingly, the underlying molecular details of organisms are almost 
universal. All organisms depend on the activities of proteins, a complex family of molecules 
that comprise the main structural and functional units of cells. The hypothesis of molecular 
unity of organisms is strengthened by the fact that similar protein sets with similar functions 
are found in very different organisms. Nucleic acids, namely deoxyribonucleic acid (DNA) 
and ribonucleic acid (RNA), are another family of molecules found in every organism having 
the role to carry the code of life. Both unity and diversity of living things have been arisen 
through the force of evolution (Hunter, 2004). 

Both proteins and nucleic acids are linear polymers of smaller molecules called 
monomers. The term sequence is used to refer to the order of monomers that constitute these 
molecules. Because their sequence is usually long, they are both called macromolecules. 
Sequences of proteins and nucleic acids are usually represented by strings of different 
symbols, one for each monomer. Proteins are constructed by the linear combination of twenty 
amino acids, whereas nucleic acids are constructed by the linear combination of four 
nucleotides. Each nucleotide symbol refers to the nitrogen base it contains. DNA may contain 
adenine (A), cytosine (C), guanine (G), or thymine (T). In RNA molecules thymine is 
replaced by uracil (U). DNA is usually double-stranded, including two complementary chains, 
where each A of one chain binds to a T of the opposite and each C of one chain to a G of the 
opposite. These DNA strands are antiparallel. On the other hand, RNA is usually single-
stranded. 



DNA is the genetic material of almost every living organism. Instead, RNA is the 
genetic material for some viruses and carries out a variety of other functions mostly related to 
transcription and translation, which are described below. There are various types of RNA, 
such as messenger RNA (mRNA), which carries information from DNA to protein, ribosomal 
RNA (rRNA), which is part of ribosomes (translate mRNA to proteins), and transfer RNA 
(tRNA), which carry amino acids to protein synthesis location. Function of proteins is 
generally determined by their structure. Depending on various molecular forces, proteins are 
arranged in four levels of conformation (primary, secondary, tertiary, and quaternary 
structure). 

The genetic material of most organisms is organized in long double-stranded DNA 
molecules called chromosomes. An organism may contain one or more chromosomes. For 
example human cells contain 23 pairs of chromosomes. Two of them (X and Y) are sex 
chromosomes. Each copy of a pair of chromosomes is inherited from each parent. The term 
ploidy refers to the number of sets of chromosomes. For example, human somatic cells are 
diploids (contain 2×23 chromosomes), whereas the human gamete cells are haploids (contain 
23 chromosomes) A gene, that represents a molecular hereditary unit, is a DNA sequence 
located in a particular chromosome and encodes the information for the synthesis of a protein 
or RNA molecule. A chromosome usually contains a large number of genes. All the genetic 
material of a particular organism constitutes its genome. It is estimated that there are about 
20,500 genes in the haploid human genome, whereas the length of the haploid human genome 
is around 3×109 base pairs (NHGRI, 2013). 

The central dogma of molecular biology, as coined and re-stated by Francis Crick 
(1958; 1970), describes the flow of the biological information (Figure 1). The general 
transfers that take place in most organisms are described by the filled arrows. In particular, 
DNA is transcribed into RNA that is finally translated into protein. The circular arrow around 
DNA denotes its replicability. Furthermore, there are some special transfers, described by the 
unfilled arrows. RNA of retroviruses (e.g. HIV) is reverse transcribed into DNA, which is 
then integrated into the infected cell’s DNA. Also, there are viruses that replicate their RNA. 
Finally, in the laboratory it is possible to directly translate DNA into a protein. 

 
Figure 1: The flow of biological sequence information 

 
There have been proposed a lot of classification systems of organisms. One of the most 
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“nut” or “kernel”) cells contain a nucleus, which contains their genetic material, whereas 
bacteria and archaea (prokaryotic cells) lack such a kind of structure. Eukarya include many 
organisms, such as animals, plants, fungi, and protists. Most eukarya are multicellular 
organisms, whereas bacteria and archaea are unicellular. 

 
New Biological Fields and Paradigms 
The introduction of new technologies as well as the improvement of existing ones 
unavoidably led to the emergence of new fields and paradigms either because of the need to 
manage data masses or because the resulted new knowledge pointed to new directions.  

The explosive growth of biological data has made impractical their efficient 
organization, maintenance, dissemination and analysis without the use of computers. This 
need led to the evolution of bioinformatics, an inter-disciplinary field at the intersection of 
biology and informatics. The basic aims of bioinformatics are the organization of data in a 
way that allows access and update, the development of biological data analysis tools, and the 
analysis of data in order to gain new biological insights.  

Another popular term that is used sometimes in order to refer to the research area that 
bioinformatics covers is computational biology. However, many scientists consider 
bioinformatics and computational biology as two distinct fields, although strongly related. As 
mentioned by Searls (2010), most of those who discriminate bioinformatics and 
computational biology describe the former as a toolkit and the latter as a science. 

A neologism that has become very popular last years is the use of suffix "omics", 
which usually refers to a field of study in biology, such as genomics and proteomics. The 
subject of study of these fields, which is usually a collection of objects (e.g. an organism’s 
genetic material or an organism’s whole set of proteins), is described by using the suffix 
"ome", such as the genome and proteome respectively. There have been informally proposed 
a lot of such terms leading to an overuse of this new terminology paradigm. A large list of 
related terms can be found in (MediaWiki, 2013). 

Another new paradigm is systems biology, which is the approach followed in 
biological and biomedical research in order to understand biology at the system level. It is an 
inter-disciplinary field of study that focuses on the structure and dynamics of cell and 
organism function in a more holistic perspective, rather than on the characteristics of isolated 
parts of cells or organisms in the framework of the traditional reductionism. Properties of 
systems become of central concern. The understanding of these properties may have a strong 
impact on the future of medicine. However, many advances in experimental technologies, 
software, as well as data analysis methods are required, before systems biology will be able to 
provide all its promising potential (Kitano, 2002). 

Epigenetics is the study of changes in gene function that cannot be explained by 
changes in DNA sequence (Riggs et al., 1996). These changes are heritable through mitosis, 
the process by which a cell doubles its genetic material in order to be divided into two 
daughter cells. Epigenetic mechanisms add epigenetic marks, such as methyl groups, to DNA 
or to other molecules, usually histones (take part in DNA packaging). These mechanisms 
work together and affect gene expression at many locations throughout the genome. The 
resulting epigenetic state of the genome, called epigenome, varies by cell type. The diversity 
of epigenetic marks is huge. In a diploid human genome there are tens of different post-



translational histone modifications and more than 50×106 sites of potential DNA methylation. 
This is translated in about 250,000,000 possible epigenotypes, and seems that no two human cells 
would have identical epigenomes (Cortessis et al., 2012). Moreover, epigenetic states change 
over time depending on normal developmental or pathological processes, as well as 
environmental exposures or random variation. This huge variability in epigenome dictates that 
it is a second genome positioned over the original one. That is the reason why the Greek 
prefix "epi", which means over or above, has been utilized in the term “epigenome”. 

 
Data Mining 
Data mining emerged in order to cope with the challenges that traditional data analysis 
techniques where facing up when dealing with large amounts of often peculiar data. Strictly 
speaking, data mining is the main step in the process of Knowledge Discovery in Databases or 
KDD Process (Figure 2). Knowledge Discovery in Databases is defined as the non-trivial 
process of identifying valid, novel, potentially useful, and ultimately understandable patterns 
in data (Fayyad et al., 1996). However, the term “data mining” is very often used to describe 
the whole KDD Process. Although the core of the process is the data mining step, where a 
data mining algorithm is applied in order to extract the patterns from data, the pre-processing 
and post-processing phases are very important too and contribute sensibly to the quality of the 
extracted knowledge. The pre-processing phase usually includes the selection of an 
appropriate portion of data, the cleaning of the selected data, as well as the transformation of 
data. The post-processing phase deals with the management of the produced patterns and 
models and focuses on the evaluation and interpretation of data mining results. 
 

 
Figure 2: The KDD Process 

 
The most common data mining tasks are classification, regression, clustering, and 

association rules mining (Table 1). The main goal of the first two data mining tasks is 
prediction, whereas the goal of the other two is description. In the first case, a predictive 
model is fitted in known data examples, and is used for predicting new data. In contrast, 
descriptive algorithms identify patterns or relationships in the data. Depending on the nature 
of the data and the desired knowledge there is a large number of algorithms for each task.  
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Table 1: Most common data mining tasks 

Predictive Descriptive 

Classification. Maps data into predefined 
classes, using a model that was constructed 
on data with known class mappings. 

Association Rules Mining. Extracts rules 
that describe relationships among variables 
of data. 

Regression. Maps data into a real valued 
prediction variable, using a model that was 
constructed on data with known mappings. 

Clustering. Groups data, so that data in the 
same group (cluster) are more similar to 
each other than to those in other groups. 

 
Big Data Challenges and Opportunities 
The term “big data” is very popular nowadays and related research has attracted the attention 
of a large portion of the scientific community. As mentioned by Diebold (2012) the first 
appearance of this term was in a Silicon Graphics slide deck with the title of “Big Data and 
the Next Wave of InfraStress" in 1998. The first book mentioning “big data” was a data 
mining book by Weiss & Indrukya (1998), whereas the first academic paper including this 
term in the title appeared two years later (Diebold, 2000). 

The popularity of “big data” concept is justified by the fact that big data raise a lot of 
challenges in terms of management and analysis, as well as by the fact that recent 
technological advances have made possible the collection of vast amounts of data in short 
time due to the research efforts conducted in the framework of many scientific disciplines and 
research fields. Among these domains are biology and medicine, which have recently joined 
the big data race, encountering data management challenges that were traditionally faced up 
by astronomers and high-energy physicists. The challenging character of big data is described 
by 5-V’s. Laney (2001) was the first who talked about the 3-V's in big data management, 
namely volume, variety, and velocity. However, nowadays there are being proposed even 
more V’s, but two of them, variability and value, are the most popular (Fan & Bifet, 2012). 
These 5-V’s are described in the following lines (Fan & Bifet, 2012; Fayyad, 2012): 

 Volume. The volume of the data becomes larger than ever before, and increases 
rapidly, providing challenges in loading, processing, and transferring. 

 Velocity. The velocity of data streams that arrive continuously and need to be analyzed 
pose challenging real-time constraints. 

 Variety. There are many different types of data (e.g. text, sensor data, images, audio, 
video, graph), various degrees of structure in data (structured, semi-structured, 
unstructured), and often different types and structures of data are mixed. 

 Variability. The structure of the data as well as the way users want to interpret these 
data usually changes with time providing extra data and knowledge management 
challenges.  

 Value. The value refers to the quality of the extracted knowledge that may give the 
ability of making better decisions and answering more questions. 
The increasing volume, heterogeneity, and complexity of biological and medical data 

raise difficulties that cannot be overcome by current approaches. Biological and medical big 
data usually derive from three categories of sources (NIH, 2013): 



(1) A small number of groups that produce very large amounts of data (usually large 
funded projects). 

(2) Individual investigators who produce large datasets utilizing new technologies. 
(3) A large number of sources that each produces small datasets (e.g. research data or 

clinical data in electronic medical records). 
To illustrate the volume of human genome data, it should be considered that a DNA 

sequence can be represented in a binary format (0 and 1), which is the alphabet of computers, 
by using at least two bits for each individual base pairs. Two bits provide 4 different words of 
information, namely 00, 01, 10, and 11. Those four 2-bit words are adequate to represent the 4 
different DNA bases. In that way a byte, which consists of 8 bits, can store 4 DNA bases. So, 
in order to represent the entire diploid human genome (6×109 base pairs) in digital format 
there are needed 12×109 bits or 1.5×109 bytes, that is 1.5 Gigabytes (Gb). However, the data 
files that are provided by current sequencers occupy much more volume than 1.5 Gb, that can 
be about 140 Gb as Lawrence Hunter, a computational biologist at the University of Colorado 
Denver, describes in a Nature’s technology feature article (Marx, 2013). 

Another example of the vast amount of data produced by current sequencing projects 
is that of BGI, which was formerly known as the Beijing Genomics Institute, in China. BGI is 
one of the largest producers of genomic data in the world generating 6 terabytes of genomic 
data every day. Every one of BGI's 157 genome sequencing instruments can decode a human 
genome per week, an effort taking months or years a few years ago (Marx, 2013). 

The existing solutions of the technical problems in analysis of large volumes of 
distributed biological data are grouped in three broad categories by Huttenhower, & Hofmann 
(2010):  

(1) Web applications aggregating information from multiple sources and providing pre-
computed data mining results. 

(2) Application programming environments (APIs) allowing more sophisticated queries 
on individual large data sources. 

(3) Do-it yourself solutions relying on manually obtaining and processing bulk data from 
various public repositories, which is a highly time consuming approach. 
The major challenges faced up in the use of biological and medical big data have given 

rise to new efforts, such as the NIH Big Data to Knowledge (BD2K) initiative (NIH, 2013), 
which aim to deal with this new paradigm effectively. The mission of these projects includes 
the localization and access of data and software tools, the standardization of data and 
metadata, the extension of data and software sharing policies and practices, the organization, 
management, and processing of biological and medical big data, and the development of new 
data analysis and integration tools. Finally, the training of researchers for the effective use of 
the big data resources is of particular importance. 

As presented in introduction, biological data are becoming available at a rate that 
notably outpaces Moore’s law. Consequently, individual hardware units are not any more 
adequate to satisfy the computational requirements for managing and analyzing these data. 
New algorithmic approaches with increased scalability and efficiency, as well as 
infrastructures that exploit the computational power of multiple hardware units, such as 
distributed and cloud computing are deemed necessary. 



The prevalent current trend in dealing with the big data storm is the concept of cloud 
computing. According to NIST definition (Mell & Grance 2011), "cloud computing is a 
model for enabling ubiquitous, convenient, on-demand network access to a shared pool of 
configurable computing resources that can be rapidly provisioned and released with minimal 
management effort or service provider interaction". A lot of effort in biology and medicine 
focuses on cloud computing, in order to utilize data and software tools situated in huge, off-
site centers. As Hunter describes (Marx, 2013), researchers do not have to buy their own 
hardware, thus cloud computing becomes extremely attractive in an age of reduced research 
funding. 

Another great initiative supported by CERN, ESA, EMBL, and many other partners is 
the Helix Nebula - the Science Cloud (Helix Nebula, 2013). It is an effort aiming to support 
the massive IT requirements of European scientists, based on cloud computing infrastructure. 

Finally, there have been developed big data infrastructures with the most popular being 
Apache Hadoop (The Apache Software Foundation, 2013a). It is a platform for writing 
applications that efficiently processes large amounts of data in parallel using clusters of 
computer nodes. It is based on a distributed file system called Hadoop Distributed Filesystem 
(HDFS), as well as on the MapReduce programming model. There are also open source 
initiatives, such as Apache Mahout (The Apache Software Foundation, 2013b), which is a 
scalable machine learning and data mining software based mostly in Hadoop. It implements a 
lot of machine learning and data mining algorithms. 

 

Biological and Medical Data Mining Applications 
This section describes the most common data mining application in biological and medical 
data that have entered or have the potential to enter the big data realm.    
 
Biological Sequence Mining 
Sequence analysis refers to the use of analytical methods to unravel the structure, the 
function, and various features of biological sequences, such as DNA, RNA, and protein 
sequences. Genome sequencing projects provide vast amounts of biological sequences, which 
have to be analyzed and annotated. Gene prediction usually follows sequencing and aims to 
identify biologically functional stretches of DNA. This is not a trivial task, especially for the 
more complex eukaryotic genomes. Therefore, the use of advanced techniques including data 
mining is demanded.  

The most important sequence analysis tasks include the comparison of sequences in 
order to find similarities that may imply structural and functional relation, the identification of 
sequence differences and variations, such as mutations and single nucleotide polymorphisms 
(SNPs), and the evolution and genetic diversity of sequences and organisms. Moreover, 
sequence analysis includes the identification of intrinsic characteristics, such as the prediction 
of regulatory regions (i.e. promoters and enhancers), which are segments of DNA where 
regulatory proteins bind preferentially and thus control gene expression and consequently 
protein abundance. Prediction of the transcription start site, the translation initiation site, the 
splice sites, and the polyadenylation site are also some important sequence analysis tasks. 
Finally, it should be mentioned that epigenetic states are also recorded using sequencing 
methods. 



However, it is worth mentioning that sequencing and the subsequent analysis of the 
sequenced genomes is not only constricted by the strict scientific frame of the elucidation of 
the rules that govern life. It is also applied in clinical practice and it will be even more 
frequently applied in the future, following the concurrent scientific advances and knowledge 
insights in molecular biology and bioinformatics. The analysis of the genome of individuals 
can reveal the genetic profile of the person, providing the potential of actions that were 
unreachable up to now. The detection of genetic predisposition for specific diseases and the 
preparation of the best possible drug according to patient’s genetic profile are two 
representative examples of the value that molecular biology and bioinformatics add to clinical 
practice, guiding to a more personalized medicine. However, the high genetic and molecular 
complexity and heterogeneity of many diseases, like cancer, keeps, at least for the moment, 
genomics away from an everyday clinical practice. This suggests an even harder effort and an 
even greater network of scientific collaboration to overcome the problems that constantly 
keep personalized medicine at its infancy (Katsios & Roukos, 2010). 
 
Gene Expression Analysis 
Each organism contains a number of genes that code the synthesis of an RNA or protein 
molecule. Almost each cell contains the same set of chromosomes and genes. However, there 
are many cell types that have very different properties and functions. These differences are 
dictated by respective differences in protein abundance. The concentration of a protein mostly 
depends on the levels of its corresponding mRNA molecule, which in turn are determined by 
the expression of the related gene. The process of information transferring from a gene to 
mRNA and then to a protein is called gene expression.  

A very popular tool for analyzing gene expression is microarray or gene chip (Schena, 
et al., 1995), which measures the relative mRNA levels of thousands of genes, providing the 
ability to compare the expression levels of different biological samples. A microarray consists 
of a large number of spots. Every spot contains an amount of a specific short DNA sequence 
(oligonucleotide), called probe. This sequence is usually a short part of a gene or other DNA 
sequence that can be hybridized with its complementary sequence in the sample. The degree 
of hybridization indicates the level of gene expression. However, as the number of samples 
increases, the time and cost of the experiment may increase importantly. These samples may 
correlate with different time points taken during a biological process or at different 
developmental stages. They may also correlate with different tissue types, such as normal 
cells and cancerous cells.  

Another method for measuring genome-wide gene expression is Serial Analysis of 
Gene Expression (SAGE), which allows the quantitative profiling of a large number of 
mRNA transcripts (Velculescu et al., 1995). It is based on sequencing technology and uses 
small tags (10-13 base pairs) that correspond to fragments of mRNA transcripts. Although, 
SAGE had the advantage that the experimenter does not have to know in advance which 
mRNA sequences will be studied, its diminished reliability didn’t allow this method to be as 
popular as microarrays. However, several improved variants have been developed since then, 
with the most advanced being SuperSAGE (Matsumura et al., 2005), which uses longer tags 
(26 base pairs). SuperSAGE provides the benefits of reduced time, cost, and effort for 



analysis by exploiting the advantages of next-generation sequencing, which reduces 
complexity and allows better quantification. 

A more recently developed technology for genome-wide expression analysis is Whole 
Transcriptome Shotgun Sequencing (WTSS) or RNA-Seq (Morin et al., 2008). This method 
uses high throughput sequencing technologies to determine the expression level and exact 
nucleotide sequence of each mRNA transcript that is expressed in a sample. 

The greatest challenge posed by gene expression data is their high dimensionality. 
They contain a small number of samples, which is in the order of tens or a few hundreds, but 
a very large number of features, namely genes, that is usually in the order of thousands. The 
majority of genes are usually irrelevant and uninformative. Feature selection methods aim to 
reduce the possibility of shadowing the relevant genes’ information. Many feature selection 
approaches have been utilized for reducing the dimensionality of the data by selecting a small 
number of genes. A thorough study of such methods is provided by Hua et al. (2009). 

Clustering is maybe the most used method in gene expression analysis. Clustering 
methods can be used to cluster genes with similar behavior or samples with similar gene 
expressions together. A category of clustering algorithms, called subspace clustering, bi-
clustering, or two-mode clustering algorithms (Van Mechelen et al., 2004), are used to 
simultaneously cluster genes and samples. This family of algorithms is very interesting in the 
domain of gene expression analysis, since a small set of genes is usually expressed in a small 
group of samples. However, the high dimensionality and the noise of the data, as well as the 
high computational complexity of bi-clustering algorithms constrict the performance. A 
survey of gene expression clustering techniques is presented by Jiang et al. (2004). 
 
Data Mining in Structural Bioinformatics 
Structural bioinformatics is the subfield of bioinformatics which is related to the analysis and 
prediction of the three-dimensional structure of biological macromolecules, especially for 
proteins. The application of data mining in structural bioinformatics is quite challenging, 
since structural data are not linear. Moreover, the search space for most structural problems is 
continuous, namely infinite and demands highly efficient and heuristic algorithms (Gu & 
Bourne, 2009). 

Data mining algorithms have been utilized for the prediction of various protein 
properties, such as active sites of enzymes, modification sites, and protein domains. One of 
the most interesting applications of data mining in structural bioinformatics is the prediction 
of secondary structure of proteins given their sequence of amino acids. This problem has been 
studied for about four decades, with the first published work based on single residue statistics 
(Chou & Fasman, 1974). Many techniques have been developed since then for dealing with 
this problem and combined methods have provided improved prediction accuracy. 

Other important problems of structural bioinformatics that utilize data mining methods 
are the RNA secondary structure prediction, the inference of a protein’s function from its 
structure, and the efficient design of drugs, based on structural knowledge of their target. 
 
Biomedical Text Mining 
Biomedical text mining, concerns the automatic extraction of information from usually 
unstructured text documents with content related to biology and medicine. Biomedical text 



mining has become an attractive research area, since it is critical for researchers in the fields 
of biology and medicine to access the most recent information concerning the domain of their 
expertise. Current practice involves on-line search for information, employing the latest 
technologies in text mining, information retrieval, and semantic web. 

From a data miner’s point of view, biomedical text data have special characteristics 
that raise essential challenges. The most important of these characteristics are the heavy use of 
domain-specific terminology, the polysemy of words, namely the existence of many words 
that have multiple meanings (word sense disambiguation), the low frequency words (sparse 
data), the use of multiple terms having the same meaning (semantics), the frequent creation of 
new terms, and the different writing styles. Moreover, the huge volume of data makes 
biomedical text mining an even more challenging big data mining paradigm. Illustrative of the 
large volume of biomedical text data is the fact that PubMed, which is one of the most 
popular databases providing free access to references and abstracts on life sciences and 
biomedical topics, has about 23 million records, as of August 2013. 

The tasks of biomedical text mining have been categorized in many studies from 
different points of view. In the following lines the most common tasks are presented 
according to Cohen and Hersh (2005) as well as Simpson & Demner-Fushman (2012): 

 Named entity recognition (NER). Refers to the automatic identification of the presence 
of specific biological or medical terms in unstructured text. 

 Synonym and abbreviation extraction. Provides more advantages to users’ searches, 
since many biological and medical entities have multiple names or abbreviations. 

 Relationship extraction. Refers to the identification of relationships among entities.  

 Hypothesis generation. Involves the extraction of previously unknown possibly 
valuable relationships among entities. 

 Event extraction. It is the result of a recent shift in biomedical information extraction 
from binary relationship identification to the more motivated task of recognizing 
complex, possibly nested event structures. 

 Text classification. It is the automatic recognition whether a document or part of it has 
specific characteristics of interest. 

 Summarization. Refers to the automatic summarization of biological and medical 
documents. 

 Question answering. Involves the process of answering directly and precisely to 
natural language questions. 

 
Biological Network Analysis 
Network analysis can be applied in various problems in biology and medicine, including 
finding gene function, drug target identification, designing strategies for disease diagnosis and 
treatment, as well as dealing with epidemics and biosurveillance. The large number of pieces 
that compose a biological system and the interactions among them are more accurately 
described as networks. These networks are represented by graphs that may contain many 
thousands of vertices and edges. The most popular network analysis applications in biology 
and medicine are described in more detail in the following lines (Pavlopoulos et al., 2011). 



 Protein-protein interaction (PPI) networks. These networks contain information of 
functional interactions among various proteins that need to cooperate with each other 
in order to accomplish the various biological processes. The majority of proteins 
interac with multiple partners (on average six to eight other proteins) and form 
complex interaction networks (Panchenko & Przytycka, 2008). The most common 
representation of these networks is as undirected graphs. The amino acid sequence of 
most proteins is known. However, the functions of the majority of these proteins have 
not been accurately recognized. The prediction of proteins functions is a challenging 
problem. The researchers believe that they will gain important knowledge on how 
each protein works by studying its interactions with other proteins. Since there are 
techniques that make possible the detection of protein interactions within an organism, 
research has been focused on the analysis of protein interaction networks in order to 
infer protein functions. 

 Gene regulatory networks (GRNs). These networks contain information concerning 
the control of gene expression in cells. They include a set of DNA segments that 
interact with each other as well as with other substances in the cell. Those interactions 
are accomplished indirectly through their RNA or protein products. There is a number 
of factors that regulate and modify those products, such as transcription factors, which 
regulate the process of transcription and post-translational modifications (e.g. 
phosphorylation or glycosylation) that alter proteins in order to change their structure 
and function. Gene regulatory networks are usually represented as directed graphs in 
order to model the way that proteins and other molecules participate in gene 
expression. 

 Signal transduction networks. Signal transduction networks contain interactions 
among different biological molecules such as proteins or other macromolecules, 
hormones, and neurotransmitters, representing the transmission of signals either 
within the cell or from the cell's environment to the inside of the cell. These networks 
are usually represented by directed graphs with multiple edges. 

 Metabolic networks. These networks contain information related to metabolic 
processes of organisms. The series of biochemical reactions that take place in cells are 
called metabolic pathways. Metabolic networks represent the metabolic pathways 
along with the interactions that regulate these biochemical reactions. Enzymes, which 
are the proteins that catalyze biochemical reactions, have a key role in metabolic 
networks. 
A lot of methods have been proposed for dealing with network analysis and graph 

mining. In particular, most of the research efforts concern analysis of the World Wide Web 
and social networks. However, biological network analysis benefits from the advances in 
general network analysis, but also demands special attention due to the specific characteristics 
of such networks as described above. 
 
Matagenomics Data Mining 
Metagenomics is a field that deals with the study of metagenomes, which include the genetic 
material of microorganisms that is received directly from the environment they inhibit. 
Metagenomics enables the study of uncultured microorganisms in genomic level. The result 



of studying only cultured microorganisms was that the vast majority of microbial biodiversity 
had been missed (Hugenholz et al., 1998). The recent utilization of sequencing methods 
(Eisen, 2007) in order to sequence the genome of uncultured microorganisms that are sampled 
directly from their habitats cures significantly this problem. Higher speed and lower cost of 
sequencing technologies provide the means for thorough and wide study of this microscopic 
world.  

It is obvious that this novel way of genomic data gathering pose new big data 
challenges that were not met before. First of all, since the data are received from uncultured 
microorganisms, there is a large genomic heterogeneity, often containing more than 10,000 
species. Moreover, the sequential data are typically noisy and partial (Wooley et al., 2010). 
This recently evolved field seems quite promising to biologists and has attracted a lot of 
attention. The basic aim of bioinformatics and big data scientists is to provide the tools to deal 
efficiently and effectively with the large volume, high noise and incompleteness of 
metagenomic data. 
 
Medical Image Mining 
Medical imaging refers to any process that is used in order to create images of the human 
body or parts of it. The aim of creating these images is to provide clinical diagnostic 
information or to contribute to research in medicine. The most of the medical imaging data 
are received in the application framework of radiology, nuclear medicine, endoscopy, and 
microscopy.  

Medical imaging data are collected in an incredibly rapid rate resulting to huge 
collections of data that pose big data mining challenges to researchers. According to Frost & 
Sullivan’s recent predictions (Nafziger, 2013), diagnostic imaging alone is going to generate 
about 1 exabyte (1018 bytes) of data in three years (2013-2016). Advances in medical imaging 
technology have greatly increased the amount of medical information included in a medical 
image posing challenges to clinicians too. This arises due to the increased spatial resolution, 
which provides greater anatomical detail, as well as the increased contrast resolution, which 
permits evaluating even more subtle structures (Rao et al., 2009). For this reason, although 
these technological advances provide diagnostic benefits, they may result in data overload. 
Moreover, the increased image acquisition rate increases even more clinician’s workload.  

There have been developed a lot of clinically motivated data mining products aiming 
to extract the key information from the vast amount of imaging data in order to provide to 
radiologists the means for a more accurate and timely diagnosis with a consequent positive 
impact on patient’s health. Common methodology of all of the medical image mining 
applications, which may target on different clinical tasks, is the transformation of raw 
imaging data into clinically relevant information, through data mining algorithms. Rao et al. 
(2009) review such applications focusing on the data mining challenges faced up in 
developing commercial products. 

 
Data Mining for Biosurveillance and Epidemiology 
Biosurveillance is dedicated to managing and analyzing health related data for the early 
detection of threats and hazards, so that the most effective and timely actions can be taken to 
protect public health (DHHS, 2010). There are many potential threats to human health, 



including various environmental exposures and disease outbreaks. This new paradigm for 
public health aims to integrate and efficiently manage health related data contained in many 
distributed data sources. The large volume and the noisy character of these data demands 
special treatment and cloud computing infrastructures are considered particularly important 
for managing this kind of data (Ramanathan, 2012). 

Epidemiology is a field of medical science that deals with the incidence, distribution, 
and control of disease in populations depending on the study of patterns, causes, and effects 
of health and disease conditions. Classical statistical methods have been immensely used in 
epidemiology. However, the vast amount of data along with their embedded complexity 
makes data mining an indispensable tool for analyzing efficiently and effectively these data in 
a hypothesis generating manner rather than the traditional statistical hypothesis testing style 
(Fefferman, 2006). 

Both biosurveillance and epidemiology deal with the detection of unusual events, such 
as disease outbreaks. Consequently, anomaly detection and emerging patterns mining are 
common data mining tasks applied in this domain. Moreover, network analysis and clustering 
methods are also considered of particular importance in the study of this kind of problems. 

 
Conclusions 
For a large period of time research progress in biology and medicine was constricted by the 
poor yield of data acquisition methods. However, the great technological progress of the last 
decades has provided the means for collecting huge data masses with lower cost and effort. 
Examples are the advances in sequencing and medical imaging technologies. After surpassing 
the data acquisition limits, scientists are now facing up the great challenges of managing and 
analyzing the collected data. Moreover, new scientific paradigms, such as systems biology, 
tend to adopt a holistic perspective to their studies and deal with whole systems, rather than 
isolated parts. Such a paradigm shift widens the field of scientific view demanding an 
increased amount of data analyses and consequently additional computational resources. 

New highly scalable algorithms that can mine efficiently big data, as well as 
infrastructures that incorporate multiple hardware units, such as distributed and cloud 
computing, are considered essential in order to deal with the storm of data. A number of 
initiatives have been arisen to support the requirements of big data mining. Cloud computing 
seems to prevail at the moment among other research efforts. 

However, there is a lot of controversy about big data (Fan & Bifet, 2012). Some 
believe that there is no need to distinguish big data from traditional data analytics, since data 
will never be small again. Nevertheless, this is more or less a terminology issue and does not 
practically affect the direction of research on the topic. The thought that bigger data are not 
necessarily better data is realistic. Noise, misrepresentation, and search for information that is 
not included in given data are important aspects that have to be considered, in order to 
improve quality of big data. Moreover, statistical significance of results obtained from big 
data analyses has to be a concern, since bigger data may be more prone to randomness. 
Finally, ethical worries about data accessibility remain an important issue. 

Regardless of the controversies about big data, common sense dictates that more data 
have the potential to embody more knowledge, especially if data acquisition conditions do not 
reduce acquired data quality. The near future of big data science seems to be predictable and 



what is believed is that big data are going to become even bigger not only due to the 
technological advances but also because of the strong intention of scientists to answer more 
questions. Data deluge as well as scientific and technological progresses have driven for 
various reasons to the emergence of new interdisciplinary fields that fuse seemingly unrelated 
fields. Examples are bioinformatics and astrobiology. Analysis of big data has the potential to 
provide the essential means to bridge the gaps of even more scientific disciplines in the future.   
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